
CS 61A
DISCUSSION TEN

Streams, Iterators,
and Binary Trees

April 13, 2017

TODAY’S AGENDA

Ideally, you will learn (or reinforce your knowledge of):

▸ how to define streams

▸ how to define iterators

▸ how to process binary trees

Stretch goals:

▸ acquire the sum of all human knowledge

ANNOUNCEMENTS

▸ Scheme checkpoints are indeed graded on correctness.

▸ Hidden tests are only available when you submit.

▸ Project party on Wednesday 4/19.

▸ Homework is due on Tuesday.

▸ Special topics for the final discussion will actually just be
bagels; I don’t want to try to fit an AI overview into 15-20
minutes. But that’s fine – more time to spend on the
holey-est of bread products!

ATTENDANCE

The URL suffix is on the board

- append it to tinyurl.com/ :)

(if you’re not in class, just email me)

STREAMS

STREAMS

Streams are linked lists that are evaluated lazily:

▸ The rest won’t be computed until we say <stream>.rest
▸ After we ask for it, the result will be remembered (we won’t have to call

the compute_rest function again)

Python stream interface:

▸ first gives us the first element of the stream
▸ rest gives us the rest of the stream (which should also be a stream)

▹ if the rest has never been computed, call _compute_rest
▹ if the rest was ever computed, return whatever was saved in _rest

▸ Stream.empty is the empty stream

STREAMS

▸ Create a stream by passing in a value and a compute_rest function
▹ This function should take no arguments
▹ This function should return a Stream (or Stream.empty)

▸ We pass in a function so that we can have lazy evaluation. Without this
detail, our streams would just be linked lists (as the “rest” would be
evaluated at creation time)

▸ Once the stream is created, it’s pretty much just used like a linked list
▹ So most of our stream problems will revolve around creation

class Stream:

 class empty:

 def __repr__(self):

 return 'Stream.empty'

 empty = empty()

 def __init__(self, first, compute_rest=empty):

 self.first = first

 if compute_rest is Stream.empty or isinstance(compute_rest, Stream):

 self._rest, self._compute_rest = compute_rest, None

 else:

 assert callable(compute_rest), 'compute_rest must be callable'

 self._compute_rest = compute_rest

 @property

 def rest(self):

 if self._compute_rest is not None:

 self._rest = self._compute_rest()

 self._compute_rest = None

 return self._rest

 def __repr__(self):

 return 'Stream({0}, <...>)'.format(repr(self.first))

STREAMS

def make_integer_stream(first=1):

 def compute_rest():

 return make_integer_stream(first + 1)

 return Stream(first, compute_rest)

It’s nice to have stream creators like make_integer_stream, because we can
wrap them in no-argument functions and pass them as the compute_rest
argument to the Stream constructor.

STREAMS

What is the advantage of using a stream over a linked list?

Elements won’t be evaluated unnecessarily if they are never used… meaning
efficient space usage! Also, streams allow for the representation of infinite-length
sequences.

On streams versus iterators:
Every time you call next on an iterator, it changes. Streams don’t.
Otherwise there are many similarities; iterators provide lazy evaluation as well.

ITERATORS

ITERATORS

According to the Python specification for iterators:

next(iterator) → value, or a StopIteration error

iter(iterator) → the iterator itself

BINARY
SEARCH TREES

BINARY SEARCH TREES

Binary search trees are binary trees,

class BinTree:

empty = ()

def __init__(self, label, left=empty, right=empty):

self.label = label

self.left = left

self.right = right

except everything in self.left must be less than or equal to self.label
 and everything in self.right must be greater than or equal to self.label

